Canola Insect Pests to Scout for in 2022

Janet J. Knodel

Professor and Extension Entomologist

Minnesota Canola Council Symposium

December 7, 2021

Flea Beetles of Canola

Striped Flea Beetle Phyllotreta striolata

Crucifer Flea Beetle **Phyllotret**a cruciferae

Photograph by P. Beauzay

2018 Canola Flea Beetle Survey Crucifer Flea Beetle (*Phyllotreta cruciferae*)

- > 45,434 total specimens
- > 98.2% of flea beetles collected
- > 100% of the fields positive

EXTENSION

> 22 counties out of 22

Total number of Flea Beetles Collected per 100 Sweeps

■ 1-50 ▲ 51-100 ● 101-500 <mark></mark> 501-1000 ▲ >1000

CANOLA GROWERS Association

2018 Canola Flea Beetle Survey Striped Flea Beetle (*Phyllotreta striolata*)

656 total specimens
1.4% of flea beetles
collected
66% of the fields positive
18 counties out of 22

Total number of Flea Beetles Collected per 100 Sweeps

• 0 🔺 1-25 🔵 26-50

51-75 > 75

Striped Flea Beetle (SFB) Populations in Canola from 2014-2018

% of Surveyed Field Positive for SFB

NDSU

EXTENSION

— Density # SFB per Field

Source: Crucifer Flea Beetle: Biology and IPM in Canola, E1234, NDSU Ext.

Canola seedling damage, pitting, caused by flea beetle feeding (top) and undamaged seedling (bottom).

NDSU EXTENSION

Insecticide Seed Treatments in Canola

- Neonicotinoids Group 4A (flea beetles & wireworms)
 - Thiamethoxam (Helix XTra, Helix Vibrance)
 - Clothianidin (Prosper EverGol)
- Diamides Group 28 (flea beetles & cutworms)
 - Cyantraniliprole (Lumiderm, Fortenza)
- Butenolides, Group 4D (flea beetles only)
 - Flupyradiforuone (Buteo Start)

Estimated Percentage of Canola Acres in ND Treated with Insecticide Seed Treatments from 1996-2012 100 Other 90 Clothianidin 80 Thiamethoxan 70 % acres treated Imidacloprid 60 Carbofuran 50 40 30 20 10 0 1996 2000 2004 2008 2012

Source: Zollinger et al. Pesticide Use and Pest Management Practices in North Dakota 1996, 2000, 2004, 2008, 2012

Pesticide Resistance

NDSU

- Over 500 insects worldwide
- Cross-resistance becoming more prevalent

Objective of Greenhouse Bioassays

 Determine the susceptibility of current neonicotinoid and diamide seed treatments for control of spring populations of *P. cruciferae* versus *P. striolata* in canola.

Greenhouse Bioassay – Insecticide Seed Treatment Susceptibility between Crucifer Flea Beetles and Striped Flea Beetles

RCBD factorial arrangement
 6 reps, ran twice

- Canola Seed Treatment
 - Clothianidin (Prosper FX), 200.8 g ai per 100 kg seed
 - Thiamethoxam (Helix XTra), 400 g ai per 100 kg seed
 - Cyantraniliprole (Lumiderm), 1000 g ai per 100 kg seed
 - Untreated check

EXTENSION

NDSU

Bioassay for Insecticide Seed Treatments

- 10 flea beetles were introduced on 5 plants per cup.
- Conducted live counts and feeding injury ratings at 3, 7 and 10 days after infestation.

Bioassay for Insecticide Seed Treatments

• Feeding injury score was rated on a 0-6 scale based on cotyledon pitting feeding injury (Knodel et al. 2008).

- 1 = 1-3 pits
- 2 = 4-9 pits
- 3 = 10-15 pits
- 4 = 16-25 pits
- 5 = >25 pits
- 6 = Plant death

NDSU EXTENSION

Crucifer FB versus Striped FB – Day 7

Significance at α =0.05 CLO = clothianidin, CYA = cyantraniliprole, THI = thiamethoxam, UTC = untreated control Asterisks mean significant differences between paired SFB and CFB plots according to a t-test with equal variances (P \leq 0.05) where * is P \leq 0.05,** is P \leq 0.01, *** is P \leq 0.001 and **** is P \leq 0.0001.

Conclusion

NDSU

EXTENSION

- Striped flea beetle (SFB) had reduced susceptibility compared to crucifer flea beetle (CFB)
 - Striped flea beetle had decreased mortality and increased feeding injury
 - Tansey et al. (2008) found similar response for THI and CLO between the two species of flea beetles in Canada
- Mortality on Observation Day 7

Flea Beetles

Treatment	Mortality	
	SFB	CFB
тні	38	84
CLO	55	76
CYA	37	95

New Insecticide Seed Treatment - Canola

BAYER BUTEÓ Start

- Bayer Crop Sciences
- Buteo Start, AI flupyradiforuone, Group 4D (Butenolides)
 - Flea beetles **SYSTEMIC TRANSLOCATION**

EXTENSION

NDSU

Source: Bayer systemicity studies: Uptake and translocation of [14C]-flupyradifurone after seed treatment in oliseed rape. Red indicates higher concentration of active.

Field - Buteo Start Seed Treatment 2021

Bayer CropScience in Canola Seed Treatment for Control of Flea Beetles 2021

Trt 1 = Prosper Evergol @ 21.5 fl oz/cwt + Buteo Start @ 16 fl oz/cwt Trt 2 = Prosper Evergol @ 21.5 fl oz/cwt + Buteo Start @ 9.6 fl oz/cwt Trt 3 = Prosper Evergol @ 21.5 fl oz/cwt Trt 4 = Untreated Check

<u>Injury Rating</u> 0 = 0 pits 1 = 1-3 pits 2 = 4-9 pits 3 = 10-15 pits 4 = 16-25 pits 5 = >25 pits 6 = Plant death

Field - Buteo Start Seed Treatment 2021

Buteo Start Field Plots - Canada

NDSU EXTENSION

Greenhouse - Buteo Start Seed Treatment 2021

Treatment	Rate	
Buteo Start (low rate)	9.6 fl oz/acre	
Buteo Start (high rate)	16 fl oz/acre	

Greenhouse - Buteo Start Seed Treatment 2021

Treatment	Rate	
Buteo Start (low rate)	9.6 fl oz/acre	
Buteo Start (high rate)	16 fl oz/acre	

Greenhouse - Buteo Start Seed Treatment 2021

From left to right: Untreated check, Buteo Start low rate and Buteo Start high rate assessed at day 10 (7 DAP).

Diamondback Moth (Plutella xylostella)

NDSU EXTENSION

Using Air Flow Trajectories to Predict Infestations of Diamondback moth in Canola in Northern Great Plains

- Migratory insect pest
 - Do not overwinter in ND or MN or Canada
- Originate primarily from southern
 U.S.A. or Mexico when strong winds carry adults northward in spring
 - Dosdall et al. 2001

Diamondback Moth – Life Cycle

Diamondback Moth – Crop Damage

- Larvae may feed on leaves, buds, flowers, seed pods and green outer layer of the stem
- Irregular shaped holes with membranes

EXTENSION

NDSU

Can Canola Compensate for Some Feeding?

- Canola can compensate well for feeding on **buds** and **flowers**, particularly if soil moisture is good.
- Pod feeding main concern, especially in dry weather (less leaf material), and larvae feed on pods earlier.

NDSU

FXTENSION

Trap Monitoring for Adult Diamondback Moths

Put traps in field in May - June

NDSU

Appropriate Use of DBM Trap Data

• Appropriate use of the trap data.

NDSE

- Look for high numbers of adults >100 moths per trap per week, <u>early</u> in the season.
- Advise farmers and agronomists to scout for DBM larvae
- Trap counts are not a substitute for regular field scouting, even if trap counts are low.

Field Scouting for Diamondback Moth Larvae

- Remove plants in an area measuring about 1 foot square
- Beat them on a clean surface

NDSU

- Count the number of larvae that fall or dangle from the plants
- Repeat this procedure in at least five locations in the field
- Common to see all life stage in field

Nominal Thresholds - Diamondback Moth on Canola

- Seedling stage:
 - >25% defoliation, larvae still present on plants
- Immature to flowering plants:
 - If larvae exceed 10-15 per ft² of plants
- Plants with flowers and pods:

If larvae exceed 20-30 per ft²

Foliar Insecticide for DBM in Canola

Pyrethroids – Group 3A

EXTENSION

- Bifenthrin (Helix XTra, Helix Vibrance)
- Deltamethrin (Delta Gold)
- Gamma-cyhalothrin (Declare)
- Lambda-cyhalothrin (Warrior II, Silencer, Lambda-T, etc.)
- Zeta-cypermethrin (Mustang Maxx)
- Diamides Group 28 (Lep pests)
 - Chlorantraniliprole (Coragen, Prevathon)
 - Cyantraniliprole (Exirel) (Lep pest + flea beetle)
- Bacteria

NDSU

- Bacillus thuringiensis (DiPel DF, Xen Tari DF)
- Premix Chlorantraniliprole 28 + lambda-cyhalothrin 3A (Besiege)
- Premix –Sulfoxaflor 4C + Bifenthrin 3A (Ridgeback)

Field Reports of Pyrethroid Failures against DBM - Spray 2-3 times with low kill - NE ND Notify your Extension agent

Mortality Factor of Diamondback Moth

- Rainfall can be a major mortality factor of eggs and early growth stages (instars) of larvae
 - Harcourt. 1963. Memoirs of the Ent. Soc. Canada. 55-66.
 - Kobori and Amano. 2003. Applied Entomology and Zoology. 249-253.
- Predators, parasitoids and pathogens

Natural Enemies of Diamondback Moth

Parasitoids

Photo courtesy of Lloyd Dosdall, University of Alberta

Predators

Natural Enemies of Diamondback Moth

• Disease pathogen, *Zoopthora*, especially if environmental conditions are humid and moist.

Canola Insect & Disease Diagnostic Series

EXTENSION

NDSU

Introduction

General Scouting & Calendar Root and Surface Feeders

- Wireworms
- Cabbage root maggots
- Cutworms

Foliage and Seed feeders

- Flea beetles
- Grasshoppers
- Aster leafhoppers
- Bertha armyworms
- Lygus bugs
- Cabbage seed pod weevils

Canola Insect Diagnostic Series

EXTENSION

NDSU

Sap Feeders

- Turnip aphids, cabbage aphids and other aphid species New Insect Pests of Canola
- Canola flower midge
- Invasive Swede midge

Biological Control – Natural Enemies

- Predators
 - Lady beetles
 - Lacewings
 - $\,\circ\,$ Orius bug and other true bugs
 - **o** Syrphid fly larva
 - **o** Ground beetles (Carabidae)
- Parasitoids
 - Parasitic wasps
 - Tachinid flies
- Beneficial entomopathogens (fungi ,bacteria, viruses)

Pollinators

